Silixa does not consent to the recording of this conversation and/or presentation, by audio, video or any other means. Silixa reserves the right to pursue any and all available legal and equitable remedies should a recording be made.

Advances in Distributed Acoustic Sensing (DAS) monitoring for CCS projects Dr Anna Stork, Senior Geophysicist ^{CO2 storage - and opportunities for geoscientists, 18 May 2022}

What is Distributed Fibre Optic Sensing?

- Light-based measurement technique using a laser "interrogator" and a fibre optic cable.
- The sensor is the fibre optic cable.
- Used to measure temperature, strain-rate or strain.
- Used in borehole & surface measurements.
- Wide aperture coverage compared to standard sensing systems.
- Specifications:
 - <1m spatial sampling capability.
 - Measurement range 10s of kilometres.
 - Simultaneous measurements at all points along optical fibre cable.

Fibre Optic Sensing Advantages

Fibre Optic Sensing Advantages

Borehole fibre cable in metal tube

Fibre-optic cables

- Continuous sensor.
- Slim package for permanent deployment.
- Large aperture, dense array.
- No electronics.
- Single cable with multiple optical fibres for acoustic, temperature, and strain sensing.

Array of borehole sensors

<u>Geophones</u>

- Discrete sensors.
- Bulky, not well suited to permanent deployment.
- Limited number of channels.
- Electronic components and connections required.

Distributed Fibre Optical Sensing Technology

Distributed Fibre Optical Sensing Technology

Distributed Fibre Optical Sensing Technology

CCS Monitoring Challenges

Conformance, Containment and Contingency Monitoring

Operators to ensure the safe storage of CO₂

Measurement, monitoring, and verification (MMV) plans to verify

- Is CO₂ injected into the intended storage formations?
- Can the injected CO₂ be tracked over time in the intended storage volume?
- Can leakage be detected?
 - Wellbore monitoring.
 - Subsurface & fault imaging (seismic).
 - CO₂ plume monitoring (seismic, gravity)

CCS monitoring operations present technical challenges

- Harsh environments in-well
- Large storage sites
- Offshore operations

DAS VSP at CO2CRC Otway

Figure courtesy of Curtin University

CCS Monitoring Requirements – Distributed fibre-optic sensing

• Pre-injection:

- Site characterisation: stratigraphy, caprock continuity, fault zones (**DAS**).
- Baseline surveys (**DAS**, **DTS**, **DSS**).
- Injection monitoring:
 - Flow profiling (**DTS**).
 - Wellbore integrity (DAS, DTS).
 - CO₂ plume mapping (**DAS**):
 - Identify leakage pathways.
 - Possible secondary accumulations.
 - CO₂ plume breakthrough (**DTS**, **DSS**).
 - Microseismic characterisation (DAS).
 - Deformation uplift/subsidence (**DSS**).
- Post-injection:
 - Verify continued CO₂ containment and storage (*DAS*, *DTS*, *DSS*).

Monitoring costs affect the economic viability of projects: **fast & reliable methods are key**.

DAS for Seismic Applications

- Phase-coherent DAS systems record full seismic wavefield:
 - Amplitude, phase & frequency.
 - Enables repeatable measurements.
- Wide-aperture coverage with long arrays:
 - Thousands of channels.
- Flexible installations:
 - 1. Surface trenched.
 - 2. Borehole:
 - Outside casing: Cemented or clamped.
 - Clamped to tubing.
 - Wireline/slickline.
 - Suspended.
- Standard single-mode and multi-mode fibre acquisitions:
 - Use of legacy fibre-optic installations.
 - Passive & active seismic.
- No electronic/mechanical components in sensor
 - No maintenance
 - Long lifetime

Surface deployment

Borehole deployment options

DAS for Seismic Applications

- Phase-coherent DAS systems record full seismic wavefield:
 - Amplitude, phase & frequency.
 - Enables repeatable measurements.
- Wide-aperture coverage with long arrays:
 - Thousands of channels.
- Flexible installations:
 - 1. Surface trenched.
 - 2. Borehole:
 - Outside casing: Cemented or clamped.
 - Clamped to tubing.
 - Wireline/slickline.
 - Suspended.
- Standard single-mode and multi-mode fibre acquisitions:
 - Use of legacy fibre-optic installations.
 - Passive & active seismic.
- No electronic/mechanical components in sensor
 - No maintenance
 - Long lifetime

Borehole deployment options

Silixa CCS Projects

Sample Projects

- Battelle, Michigan, USA
- PTRC, Aquistore, Canada
- LBNL, Citronelle, USA
- CO2CRC Otway, Australia
- ADM, Illinois, USA
- KIGAM, South Korea
- RITE, Japan
- Ciuden, Spain
- Sotacarbo, Italy
- OR, Hellisheidi, Iceland
- Zorlu Energy, Kizildere, Turkey
- ACT DIGIMON, Norway & Canada
- ACT SUCCEED, Iceland & Turkey

COMMERCIAL CCS FACILITIES IN OPERATION AND CONSTRUCTION COMMERCIAL CCS FACILITIES IN DEVELOPMENT OPERATION SUSPENDED

Source: Global Status of CCS 2021 report, Global CCS institute (<u>https://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCS-Report_Global_CCS_Institute.pdf</u>)

- 2021
- 27 operational facilities,
- 4 in construction,
- 58 in advanced development.
- North America: >40 new projects since 2020.

Case Study: Otway project, VA, Australia

Objectives:

- Establish permanent reservoir monitoring for reliable and efficient CCS.
- Reduce the cost of monitoring by tens to hundreds of millions of dollars over the life of a commercial project.
- Provide assurance to Governments and Communities.
- Novel subsurface monitoring technologies & methods:
 - 1. Appraise,
 - 2. Implement,
 - 3. Demonstrate,
 - 4. Validate.

Project outline:

- CO2CRC with CSIRO & Curtin University.
- Onshore CCS demonstration in rural area.
- 15,000 tons of CO₂ injected by 2022.
- First optical fibre cable installed in 2014.
- >40 km of fibre installed by 2020.
- 5x wells equipped with the Carina® Sensing System.
- Multiple low-impact/low-cost Surface Orbital Vibrator sources (SOV).

Large motor

Small motor Max Freg: 105 Hz

Force: 37.3 kN

Max Freq: 80 Hz Force: 69.6 kN

Correa et al. 2021 Geophysics

Case Study: Otway project, VA, Australia

Vibroseis trucks

SOV sources

Benefits of using SOVs

- Low operational costs.
- Overcomes issues with access to field sites.
- High temporal resolution.
- High repeatability.
- Results available hours after acquisition.

2D VSP Monitoring Surveys

CO₂ Plume Migration

Case Study: Aquistore project, SK, Canada

Objectives:

- Demonstrate scientific and economic feasibility of *deep saline aquifer* storage for CCS.
- Assess minimum datasets requirements for assuring safe storage.
- Assess possible induced seismicity driven by CO₂ injection.
- Provide the knowhow for jurisdictions and companies with a safe, workable solution to reduce greenhouse gas emissions.

Project outline:

- Managed by Petroleum Technology Research Centre.
- Commercial-scale project with research partners from 15 countries.
- Combined commercial power plant & CCS facility.
- Reservoir at 3,400 m depth.
- Since 2015 >400,000 tonnes of CO_2 stored.
- Most comprehensive full-scale geological field laboratory for CO₂ storage in the world.
- Accelerate understanding and verify the safety of CCS.

Figure courtesy of Don White, Geological Survey of Canada

SILIXA actionable insight

Case Study: Aquistore project, SK, Canada

Carina® CarbonSecure™

Solution

Distributed Acoustic Sensing

Distributed Strain Sensing

Cementation

Well Integrity

Induced Seismicity

3D/4D Seismic

Production/Injection Monitoring

Flow Metering

Complete solution built on 3 integrated distributed optical measurements in one cable, **DAS**, **DTS** & **DSS**:

- Assures wellbore and caprock integrity.
- Enables time-lapsed plume mapping.
- Detects induced seismicity.
- When deployed offshore can tolerate long step-out distances up to 150km or more.
- And, reduces cost.

Carina® CarbonSecure™ delivers:

- Verification of the volume of CO₂ stored underground.
- Continuous understanding of CO₂ distribution and movement.
- Assurance of long-term storage integrity.
- Minimal environmental impact.
- Lower life-cycle costs..

Offshore Cable Installation

Control lines while RIH

Monitoring DAS while RIH

Cost-effective & Proven Subsea Solution

Offshore Conventional VSP Survey

- Light well intervention vessel or jack-up rig,
- Wireline or coil tubing deployment,
- Personnel mobilisation,
- Seismic vessel,
- Duration 8-10 days.

Offshore DAS VSP Survey

- Minimal mobilisation,
- Cable permanently installed,
- Remote operation,
- Seismic vessel,
- Duration 5-10 Days.

World's first subsea DAS system

Planned offshore CSS

Summary

- Safe and secure CCS required during the energy transition phase.
- Comprehensive measuring, monitoring, and verification (MMV) planning is key to ensuring CO₂ safe storage.
- Distributed fibre optic sensing offers a viable alternative to conventional seismic methods by:
 - Reducing monitoring costs,
 - Providing spatially & temporally continuous data.
- Carina® CarbonSecure[™] provides a long-term, on-demand, and costeffective monitoring solution for safe CCS.

Faster CCS adoption worldwide.

Silixa does not consent to the recording of this conversation and/or presentation, by audio, video or any other means. Silixa reserves the right to pursue any and all available legal and equitable remedies should a recording be made.

Thank you for your attention!

Connect with us at info@silixa.com

